Synthesis, Characterization and Combustion of Triazolium Based Salts

U. Schaller, T. Keicher, V. Weiser, H. Krause

Fraunhofer ICT, Pfinztal, Germany

S. Schlechtriem

DLR – German Aerospace Center,

Hardthausen, Germany

outline

- synthesized triazolium salts
- definition of Ionic Liquids
- history and development of Ionic Liquids
- results and potential applications
- summary and conclusions

synthesized triazolium salts

definition lonic Liquids (ILs)

- consisting entirely of cations and anions
- without molecular solvent
- mp: < 100 °C (definition)

attributed properties:

- electric conductivity
- thermal stability
- very low vapor pressure
- good solvent abilities
- high heat capacity

history

first Ionic Liquids (IL):

- 1888 ethanolammonium nitrate
- 1914 ethylammonium nitrate

mp: 52-55 ℃ S. Gabriel mp: 13-14 ℃ P. Walden

since 1996 exponential growth of scientific publications about ILs

aspects favoring ILs

commercial ILs

4-amino-1-methyl-1,2,4-triazolium perchlorate (AMTP)

		AMTP	-
impact sensitivity	[Nm]	7.5	NH ₂
friction sensitivity	[N]	64	
melting point	[°C]	+84	Me
decomposition temperature	[°C]	+259	

component in melt cast formulations

4-amino-1-methyl-1,2,4-triazolium perchlorate (AMTP)

		TNT	AMTP	_
melting point	[°C]	80	84	NH ₂
decomposition temperature ^[a]	[℃]	253	290	
oxygen balance	[%]	-74	-44	Me
heat of explosion ^[b]	[J/g]	3766	4096	
shock velocity ^[c]]	[m/s]	6886	7287	_

according to TNIT

[a] DSC onset; heating rate 5 K/min. [b] calculated with ICT Code water liquid. [c] calculated with CHEETAH 2.0.

EILs – Energetic Ionic Liquids

requirements for EILs:

- liquid between
 - -40 ℃ and +150 ℃
- energetic
- Iong-term stable
- insensitive

wide operating temperature range

4-amino-1-methyl-1,2,4-triazolium nitrate (AMTN)

gelatinization of nitrocellulose (N = 12.6%)

microscopic picture of gelatinized NC

film of NC / AMTN (1:4)

transparency of film

- 4-amino-1-methyl-1,2,4-triazolium nitrate (AMTN)
 - combustion in atmospheric air

4-amino-1-methyl-1,2,4-triazolium nitrate (AMTN)

comparison to conventional liquid energetic materials

	melting point	boiling point	density	vapor pressure
	[°C]	[°C]	[g/cm ³]	[kPa]
nitromethane	-28	101	1.14	4.8
isopropylnitrate	-82	100	1.03	3.5
AMTN	-55 ^[a]	T _{dec} > 200	1.44	< 0.001

[a] glass transition temperature

outlook

wide variety of anion and cation combination possibilities

tailoring possible

task specific EILs

summary and conclusion

EILs – Energetic Ionic Liquids

relative new research area

improved physical properties in comparison to conventional energetic materials

increased performance possible

very low toxicity of the vapor phase

acknowledgment

H. Schuppler

J. Hürttlen

W. Schweikert

F. J. Berge

J. Hürttlen

A. Lity

A. Raab

H. Ciezki

Thank you

